Fire effects on net radiation and energy partitioning: Contrasting responses of tundra and boreal forest ecosystems
نویسندگان
چکیده
[1] The net radiation available to drive surface-atmosphere exchange is strongly influenced by albedo and surface temperature. Tower-based microclimatic and eddy covariance measurements in typical Alaskan black spruce and tundra ecosystems before and immediately after fire indicated a 10% decrease in net radiation over the burned spruce stand but a 12% increase in net radiation over the burned tundra surface. In both cases, there was increased partitioning of net radiation into sensible heat flux. In terms of absolute fluxes, however, fire increased average sensible heating over tundra by 50 W m 2 but caused little change in average sensible heat flux over the black spruce forest. This difference in fire effects occurred because fire altered the canopy characteristics (including surface roughness) more strongly in the forest than in the tundra, leading to a greater reduction in surface-atmosphere coupling over the forest.
منابع مشابه
Contrasting soil thermal responses to fire in Alaskan tundra and boreal forest
Recent fire activity throughout Alaska has increased the need to understand postfire impacts on soils and permafrost vulnerability. Our study utilized data and modeling from a permafrost and ecosystem gradient to develop a mechanistic understanding of the shortand long-term impacts of tundra and boreal forest fires on soil thermal dynamics. Fires influenced a variety of factors that altered the...
متن کاملModeling the effects of organic nitrogen uptake by plants on the carbon cycling of boreal forest and tundra ecosystems
Boreal forest and tundra are the major ecosystems in the northern high latitudes in which a large amount of carbon is stored. These ecosystems are nitrogen-limited due to slow mineralization rate of the soil organic nitrogen. Recently, abundant field studies have found that organic nitrogen is another important nitrogen supply for boreal forest and tundra ecosystems. In this study, we incorpora...
متن کاملPost-fire changes in net shortwave radiation along a latitudinal gradient in boreal North America
[1] Understanding how a changing boreal fire regime is likely to influence regional climate requires detailed information about fire effects on the surface radiation budget. We used time series of satellite observations of surface albedo from 2000–2011 and fire perimeters since 1970 to study post-fire changes in surface net shortwave radiation along a latitudinal transect in central Canada. Fir...
متن کاملChanges in vegetation in northern Alaska under scenarios of climate change, 2003-2100: implications for climate feedbacks.
Assessing potential future changes in arctic and boreal plant species productivity, ecosystem composition, and canopy complexity is essential for understanding environmental responses under expected altered climate forcing. We examined potential changes in the dominant plant functional types (PFTs) of the sedge tundra, shrub tundra, and boreal forest ecosystems in ecotonal northern Alaska, USA,...
متن کاملVEGETATION-CLIMATE INTERACTIONS ALONG A TRANSITION FROM TUNDRA TO BOREAL FOREST IN ALASKA By
The climate of the Alaskan Arctic is warming more rapidly than at any time in the last 400 years. Climate changes of the magnitude occurring in high latitudes have the potential to alter both the structure and function of arctic ecosystems. Structural responses reflect changes in community composition, which may also influence ecosystem function. Functional responses change the biogeochemical c...
متن کامل